Matematicas



Geometría analítica


La geometría analítica estudia las figuras geométricas mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Su desarrollo histórico comienza con la geometría cartesiana, impulsada con la aparición de la geometría diferencial de Carl Friedrich Gauss y más tarde con el desarrollo de la geometría algebraica. Actualmente la geometría analítica tiene múltiples aplicaciones más allá de las matemáticas y la ingeniería, pues forma parte ahora del trabajo de administradores para la planeación de estrategias y logística en la toma de decisiones.

Las dos cuestiones fundamentales de la geometría analítica son:
Dado el lugar geométrico en un sistema de coordenadas, obtener su ecuación.
Dada la ecuación en un sistema de coordenadas, determinar la gráfica o lugar geométrico de los puntos que verifican dicha ecuación.

Lo novedoso de la geometría analítica es que representa las figuras geométricas mediante fórmulas del tipo , donde es una función u otro tipo de expresión matemática: las rectas se expresan como ecuaciones polinómicas de grado 1 (por ejemplo, ), las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (la circunferencia , la hipérbola ), etc.


Punto medio

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas.
Puedes añadirlas así o avisar al autor principal del artículo en su página de discusión pegando:
Punto medio de un segmento, hallado mediante regla y compás.
Para otros usos de este término, véase Punto medio (desambiguación).
Punto medio o punto equidistante, en matemática, es el punto que se encuentra a la misma distancia de cualquiera de los extremos.
Si es un segmento acotado, el punto medio es el que lo divide en dos partes iguales. En ese caso, el punto medio es único y equidista de los extremos del segmento. Por cumplir esta última condición, pertenece a la mediatriz del segmento.
Construcción geométrica

El modo de obtener geométricamente el punto medio de un segmento, mediante regla y compás, consiste en trazar dos arcos de circunferencia de igual radio, con centro en los extremos, y unir sus intersecciones para obtener la recta mediatriz. Esta «corta» al segmento en su punto medio.

El punto medio de un segmento definido por las coordenadas de sus extremos: (x1, y1) y (x2, y2).
Coordenadas cartesianas
Dado un segmento, cuyos extremos tienen por coordenadas:

el punto medio tendrá por coordenadas:






No hay comentarios:

Publicar un comentario